PHYSICAL REVIEW E

VOLUME 49, NUMBER 1

JANUARY 1994

Quasilattice of fixed points of the fivefold stochastic web map
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The quasicrystalline properties of the fivefold stochastic web map M can be understood in terms of an
extension of the map to five-dimensional space. The present work focuses on the construction of a lattice
of special fixed points of the fifth-iterate map M" called quasicenters of tolerance e. With the origin
shifted to a quasicenter, M° resembles closely the unshifted map, with distortions of order € everywhere
in the phase space. The quasicenters are located by first constructing a quasilattice of reference points
by the so-called direct-projection method. Exploiting periodicity in R, the quasicenters themselves are
determined, to arbitrary precision, by means of a convergent iterative scheme, and the diffraction pattern
is found by evaluating a five-dimensional integral in the neighborhood of the origin. For representative
parameter values, the convergence of the iterative process is established by computer-assisted interval

analysis.
PACS number(s): 05.45.+b, 61.44.+p
I. INTRODUCTION

Numerical investigation [1-3] of the stochastic web
map with approximate g-fold rotational symmetry reveal
phase portraits with the apparent structure of a two-
dimensional quasicrystal. For example, in the simplest
case, a Penrose tiling [4] may be superimposed on the
g =5 web map’s phase portrait, with the arrangement of
fixed points, invariant curves, stochastic layers, etc.,
forming an approximate decoration of the tiles [2]. In
addition, the diffraction pattern associated, via Fourier
transformation, with long chaotic orbits, is reminiscent of
the pointlike diffraction pattern of the Ammann quasilat-
tice [ 5-8] associated with the Penrose tiling.

A striking feature of the quasicrystalline structure gen-
erated by the web map is the existence of quasicenters [9].
These are special points in the plane that not only are
stable fixed points of the gth iterate of the web map but
also correspond to approximate invariance of the map
with respect to certain translations. Thus, relative to a
quasicenter, the gth iterate map acts in a way that closely
resembles its action relative to the origin of coordinates.
Figure 1 provides a good illustration. Here we have used
a fifth-order interpolating Hamiltonian [10] to generate
an accurate representation of the phase portrait of the
fivefold web map over a fairly large area surrounding (a)
the origin, and (b) a not too distant quasicenter. As we
shall see later, it is possible to classify the quasicenters ac-
cording to how well they mimic the origin. The collec-
tion of all quasicenters of a given *‘tolerance” will be seen
to form an infinite two-dimensional quasicrystal.

The aim of the present work is to provide a detailed in-
vestigation of the quasicenters in the important case
where g =5, relying on an important insight of Ref. [9]:
the two-dimensional phase space of the web map can be
embedded in a g-dimensional real space in such a way
that periodicity in g dimensions is translated into quasi-
periodicity in two dimensions.

The presentation is organized as follows. After a brief
review, in Sec. II, of the basic features of the stochastic
web map, we turn, in Sec. I1], to a one-dimensional exam-
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ple that provides a convenient introduction to the
methods relating to quasicrystals, which we apply later
on. In Sec. IV, we discuss the embedding in five dimen-
sions, reviewing the results of Ref. [9], and derive a pre-
cise statement of the approximate translational invari-
ance. Before constructing the lattice of quasicenters, we
build (in Sec. V) a simpler, more symmetric quasilattice
by projecting onto the phase plane a set of sufficiently
close integer lattice points in five dimensions. The for-
malism is a direct generalization of the one-dimensional
model of Sec. III. The projected lattice points serve as a
starting point for an iterative construction, presented in
Sec. VI, of the quasicenters themselves. Formulas for the
pointlike diffraction pattern associated with the lattice of
quasicenters are derived in Sec. VII, and a computer-
assisted proof, based on interval arithmetic, of the con-
vergence of our iterative scheme is included in Sec. VIII
(with the rules of interval analysis relegated to the Ap-
pendix). Section IX contains some concluding remarks.

II. PRELIMINARY CONSIDERATIONS

The fivefold web map, treated extensively by Zaslavsky
and co-workers (for a detailed review, see [11] and [12]),
is the Poincaré map of a harmonic oscillator kicked five
times per natural period by a spatially sinusoidal impul-
sive force. Specifically, the points in phase space just pri-
or to each kick are related by the map M defined by

cosa  sina

M: 1"'

|4, . x i R (1)
v i —sina cosa +a sinx |

where a is proportional to the strength of the kick, and

a=27/5 .

For a <<1, the dynamics of the fifth-iterate map M~ is
asymptotically close to a Hamiltonian flow

OH
M> ;]: [’é}m BgH +0(a?), (2)
C9x
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4
H(x,y)= 3, cos(x coska+y sinka) . (3)
k=0

The main theme of our present investigation is the ex-
istence of certain invariant sets of the map M that have a

(b)

FIG. 1. Phase portraits of the ¢ =5 web map (a =0.3) in two
80X 80 regions of the xy plane, centered about the points (a)
(0,0), and (b) (81.58,251.09). The latter lies very close to a
quasicenter Q. In these figures, generated with the help of a
fifth-order interpolating Hamiltonian [10], the black-white
boundaries coincide, within the graphical resolution of these
pictures, with closed invariant curves of the web map M. As we
see in Sec. IV, one can find other quasicenters, much farther out
in the plane, whose phase portraits are indistinguishable from
(a) within the given resolution.

quasicrystalline structure in the sense that we can associ-
ate with them phase-space density functions that are
quasiperiodic, i.e., they have Fourier decompositions of
the form

p(x)=T cpe’* ™, (4)
kel

where the set I of allowed wave vectors is generated by
taking linear combinations, with integer coefficients, of a
finite set of basis vectors. If the series (4) is uniformly
convergent, p belongs to the space of almost periodic
functions (see, for example, [13]). For our purposes, this
class of functions is too restrictive, and so we prefer the
more general framework of Refs. [14,15], considering p to
be a class §” generalized function (tempered distribution).
The latter is defined as a continuous linear functional on
the space § of infinitely differentiable real-valued func-
tions that decrease at infinity faster than any power of the
distance from the origin. Thus pE§'(R") is defined by
the integral

plf)= [d"xp(x)f (x) .

We need not review the details of the topologies of §
and &, but merely point out some useful results (see [15]).
If f €4, then f has a Fourier transform that is also in &§.
The analogous property holds for elements of §”. Con-
vergence to a series 3,;p;, p, €ES’, can be checked by
showing that for arbitrary fE€S, 3,p; converges as a
series of real numbers. If p=3,p; converges, then the
expansion of the Fourier transform, =3 p;, also con-
verges.

A simple example to keep in mind as we proceed is the
following (Ref. [15], p. 170). Clearly the Dirac delta
function 8(x) is in 8", with 8(f)=f(0). The series

p(x)=73 8(x—2mn)

n=0

converges, since, if we take any f €S,

p(f)= [ flx)p(x)dx
=3 [fxsx—2mmdx="3 fQ2mn) .
n=0 n=0

The last sum converges by virtue of the rapid decrease of
fat .

A convenient way [16,17] to construct a quasicrystal in
d dimensions is to embed R¥ in R, g > d, in a special way.
Let Z7 be the set of g vectors with integer components.
Identify R? with a d-dimensional subspace S oriented so
that it intersects Z7 only in the origin. S is said to be ir-
rationally placed. Now consider a generalized function
p(x) that is periodic in R? (we arbitrarily select period
2m),

p&)=p(&+2mv), vEZT,
with a Fourier series expansion
pO= 3 ce™t,
kez1?

where
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cK=(2w)“4f[7 (Aep(Ere .

Here we have chosen as fundamental domain the g-
dimensional cube of side 27 centered at the origin. We
assume that p can be restricted to S, in the sense that for
EES,
psO= 3 ce™™t
kez1

converges as a generalized function in §"(S). Then we
arrive at a quasiperiodic generalized function of the form
(4) by making a transformation to new variables intrinsic
to S:

E=£&(x), xER?,
r(x)=ps(&x)=3 Cpe™™,
k

where

= X ¢
£ =dg(x)

P

Since the restriction of a class &’ generalized function to
a subspace is not automatically well defined, one must
check explicitly that the indicated expansion of r(x) is
meaningful.

We conclude this brief presentation of mathematical
tools with mention of some properties of the golden
mean,

T= ) (5)

and the related sequence of integers, the Fibonacci se-
quence defined by

Fo=F,=1,...,Fy . \=F,+F, 1, .... 6)

The properties that we use in the present work are
straightforward applications of these definitions and the
identities

P?=r+1, (7)
F= 317(7"4—(—1)"7*“2), (8)
TFk“‘Fk+1:(_1)kT_kil . (9\

It is also convenient to recall that any positive integer n
can be expanded as a sum of distinct Fibonacci numbers,

n=2 Cka ) (10)
k=1

with
cr €10,1}, cpic=0.

Because it appears frequently in expressions for bounds
and vector norms, we shall consistently use the notation

c=3—7=1+7"2. (11

III. CONSTRUCTION OF A ONE-DIMENSIONAL
QUASICRYSTAL

In this section we present a simple example of the
method of constructing a quasiperiodic (generalized)
function described in the previous section. The example
is chosen to introduce much of the machinery that we use
later as well as to make a connection with a well-known
method from the theory of quasicrystals, the so-called
direct-projection method [16-20].

We begin by defining a generalized function f, with
support in the unit square:

fol&)=0ad(&+6,/T)0(5,— 6 /T7+Db)
XO(b—E6+& /1),
—1<g), £<t, 0<b<%— .12
The support of f,, (see Fig. 2) has been chosen to lie in
the subspace S, perpendicular to the subspace
S={(x,x/T)i—x <x <o}, (13)

where 7 is the golden mean. This is easily extended to a
periodic function (see Fig. 3) on R?,

1E="3 fol&c—v. (14)
-

which satisfies
flE+v)=f(&), vEZ?. (15)

It is convenient to introduce coordinates x and u intrinsic
to S and S|, respectively. Thus, we make the linear
transformation

Sx,u)=(x—u/7, x/7tu) (16)
and reexpress f, and f in terms of the new coordinates:
@olx,u)=fol&lx,u))=8(x)0(u +u)0(u,—u) . (17
where u,=b /o, and

elx,u)=f(E(x,u)) . (18)

The restriction of f(£) to S gives a quasiperiodic sum of 6

FIG. 2. Support of f,.
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L

\

FIG. 3. Support of f. The restriction of f to S, namely p(x),
is supported on suppf N S.

-1 0 1 2 3

functions,

p(x)=p(x,0)=8(x)+ 3 (8(x—x,)+8(x+x,)),

n=1
(19)

which may be regarded as the density of an ideal quasi-
crystal with a pointlike “atom” at each of the intersec-
tions 0,*tx,, n=1,2,... of S with the support of f.
Another way of identifying these points is as the orthogo-
nal projections onto S of all integer lattice points within a
strip of width 2b/V o centered about S. Our construc-
tion thus differs little from the direct-projection method
[16-20], which was studied extensively in the mid 1980s.
In our case the assumptions of inversion symmetry and
choice of 77! for the irrational slope of S have been
motivated by our eventual application to the fivefold web
map.

To display explicitly the quasiperiodicity of p(x), we
must show that it can be expanded as a suitable discrete
sum of exponentials expikx. According to our general
strategy, we simply restrict to S the Fourier series
representing f(§):

FO=TF cppe’ ™" 20)
where

= (12 172 —2mi(m&, +ng,)

- 1
enn=J " d6 [ dE:f (61800e @1

= o . _

- mn—m/7) Sln[27T(n mO/T)ul ] ’ (22)
so that

P(x)=f(§(x,0))=ZC,,,,,e-mk’”-”x , (23)
with

Kpn=m-+n/t. 24)

To obtain an explicit expression for the location of the §
functions comprised by p(x), we note that the line S in-
tersects each line §;=m, m €Z, in a point m /7 lying be-
tween consecutive integer values |m /7| (floor) and
[m /7] (ceiling), as depicted in Fig. 4. Every point in the
support of p is the projection on S on one of the bracket-
ing integer lattice points, either (m,|m/7]|) or
(m,[m /7]). The projections are, respectively,

g_(m=-L |m+L 2 25)
g T T
and
=1 1m
q+(m)—a m+T[ T] , (26)

with geometrical bounds given by

g:(m)=m+{q.(m)), 27

— L g mN <0<l mN <, @8
TO TO
and the inversion property
gi(—m)=—qgz(m). (29)

Here we have used the notation (7)) to denote the
difference between the real number r and the nearest in-
teger, i.e.,

LrN=r+i]. (30)
Since

1
q+(m)—q_(m)=:; )

at most one member of the pair (g,,q /7) is sufficiently
close to an integer lattice point to intersect suppf. For
sufficiently small (g, (m))), namely,

[Cge(m] < ——,
T0

the quantity

gm)=m+{qg(m))) , (31)
with

( [2])

(2., 24 (am &2)

37

FIG. 4. Bracketing of the point (m,m /1) by (m,|m /7|) and
(m,[m/7]).

(=)
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(98]

<<q<m)>>=—<<%>>/\/§, (32)

coincides with the relevant g , (m) or g _(m):
g_(m), —7 3¢ '<{g_(m)) <0

g.(m), 0<Cqg (m)<rigt. ¥

g(lm)= {
Now g(m) has some useful properties that favor its
usage for |u,| <7 30" 1in (17) [i.e., b <7 in (12)]. In
particular, if we make a Fibonacci expansion of the in-
teger m,

m=3 cFp, ¢, €{0,1}, cpcp1=0,
K=1

then
1
glm)=— m+llm+lJ =L o, (34
g T T o k=1
<<q(m)»=q(m)—m=i Ck(_l)k-'rlT—k 2
0 r =
(35)
From (35), we verify that if ¢, =0,i=1,...,L—1,¢c; =1,
then
L gm) | < —— 36
g <Hatmni< T ae)

In order that x =g(m) be in the support of p(x), we
must have

4<<q(m)>>1:i‘;l<u—;, (37

that is, m must satisfy the condition

(=)

From the inequalities (36), we see that if

<u,0=b . (38)

m = 2 Cka y (39)
k=L

a necessary condition for g(m) €& suppp is
R N (40)
while a sufficient condition is
T b<b . (41)
We close this section with a useful scaling property of

the numbers g(m): multiplication by 7 brings one closer

to an integer by a factor —7 1

Lgm)yrN=—7""q(n)) . (42)
By similar reasoning,
{gn)/rN=—1qn) M . (43)

IV. FIVE-DIMENSIONAL EMBEDDING

Extending the ¢ =5 web map [9] in a useful way to a
periodic map in five-dimensional space (R*) depends cru-

cially on the properties of the cyclic permutation P,
defined by

P (&py oo, 84— (6, .

or, in matrix notation,

H6680) (44)

01000
00100
Ps=10 00 10
00001
1000 O]

Within R®, this linear transformation has three mutually
orthogonal invariant subspaces:

X={&x,y): —w<x,py<ow}, (45)
U=i{nglu,v): —x <u,v<o|, (46)
W={iw) —w<w<wo|, (47)
where
Sxy)=xo0'"+yo't', (48)
nu,v)=uwd+veo't' . (49)
Ww)=we', (50)
and the (unnormalized) basis vectors o'’ are
o'V'=(1,cosa,cos2a,cos2a,cosa) , (51)
»'?’=(0,sina, sin2a, —sin2a, —sina) , (52)
03'=(1,cos2a, cosa,cosa, cos2a) , (53)
»'*=(0,sin2a, —sina, sina, —sin2a) , (54)
0®'=(1,1,1,1,1) . (55)

Essential to the construction is the fact that X, which is
to be identified with the two-dimensional phase space of
the web map, is irrationally placed, i.e., the only real x
and y for which all five components of

X
x cosa+y sina
&(x,y)= |x cos2a+y sin2a (56)
Xx cos2a —y sin2a
X cosa —y sina

are integer multiples of 27 are x =0 and y =0. The same
property obviously holds for the orthogonal subspace U,
but not for W (which contains all points of the form

2rmo®=2mm,2mm, ..., 2mm), mEZ .

In what follows, we consistently use x=(x,y) and
u=(u,v) to parametrize X and U, respectively, and write
£(x) and n(u) for the R2— R’ embedding transformations
(48)—(50). Within the respective invariant subspaces, X,
U, and W, P; acts as follows:

x—R(a)x , (57)
u—RQ2a)u , (58)
w—w (59)
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where R (0) is the two-dimensional clockwise rotation by
angle 6.

It is now easy to write the five-dimensional analog of
M:

S(E)=Ps(E+a singw'?) . (60)

We see immediately that Mg leaves the subspace X in-
variant, and within X it acts as M:

M (£(x))=E(M(x)) . (61)

(Recall that & simply shifts from the rectangular coordi-
nates x, y intrinsic to X to the corresponding five-vector
coordinates in the embedding space.) The translation in-
variance property of My, or more accurately its fifth-
iterate map M3, follows [9] directly from (60): for all in-
teger lattice points v=(vy,...,v,)EZ", and arbitrary

point £ER?,

M(§+2mv)=M(5)+27Psv (62)
and hence

M3E+2mv)=M3(E) . (63)

Another useful translational property of M is the fol-
lowing: for all £(x),&(x")EX,and YEX, =URW,

M5(ER)FEX)+HX)=E(M gy 4, (X)) +PsX (64)
with

M,(x)=R(a) [y+asi)rcl(z+x) : (65)
Hence

M3(EX)+EXD)F ) =EMG)) (X)) +) (66)
where

M =Myo oM, . (67)

From (66), we see that M g leaves invariant not only X,
but also every hyperplane

x+X={x+¢: LEX)={x+E&x) : xERY)

parallel to X. Within y +X, M3 acts simply as M 5(5)

But (66) also describes translations within X, i.e.,
x—x+x'. We see that M), plays the role of the fifth-
iterate map relative to the shifted origin x'. One of the ex-
pressions of the quasiperiodicity of M® is a restricted
form of translation invariance; there exist special shifts x’
such that the relative map M , and the original one,
M5, are almost mdlstmgulshable Th1s can be seen from
the exphc1t forms of M % in (65) and M ¢in (67): if all five

of the &, are close to integer multiples of 2, i.e., {=27v,
vE Z3, then each factor m the definition of M(5 acts very
much like M, and so M ) acts very much like M 3

A precise statement of the closeness of M O and M is
the following: for all x€ER%,{ER?,

4
IM(;S)X‘—MSXRa 3 (1+a)* ke, (68)
k=0

where, for any real r,
(r)y=27r/Q2m) . (69)

Here the double bracket is the signed fractional part in-
troduced in (30).

Proof of estimate (68). The proof is based on the
mean-value theorem of differential calculus:

8x'=M,(x+8x)—M(x)
_ 0
=R(a)dx+aR(a) sin((z)+8x+x)-sinx]
_ sin
=R(a)dx+a({z)+8x)cos(x +Ax) cosa | * (70)
with
0<Ax <(z)+6x,
which implies, by the triangle inequality,
[6x'| <(1+a)|6x|+al{z)] . (71

Applying M AR
from (71)

ngox—MxISal(é‘oH ,

M ¢, in that order, on x, we have

|M oM (x)—M*x)| <a(1+a)[{(§) [ +al{f],

and finally,

|M§4o x -OMgo(x)—MS(x)l

<a((1+a) ()| + - +I{Eph. O

V. PROJECTED FIVE-DIMENSIONAL LATTICE POINTS

We saw in the previous section that points of phase
space, which, when embedded in five-dimensional space
as in (45), lie close to a lattice point (27vy, . . ., 2Tvy), vy
integer, are special; the phase portrait of M 3 relative to
them resembles that relative to the origin (0,0). In the
remainder of this work we focus on such points. First,
we locate explicitly the points of closest approach, i.e.,
the orthogonal projections of nearby lattice points onto
X. Unlike the origin, these are not fixed points of the
map, but it turns out that they are very close to such
fixed points. We find that both the set of projected lattice
points and the nearby fixed points of M’ (quasicenters)
are, in the formal sense, two-dimensional quasicrystals
closely related to the one-dimensional example of Sec.
III. In fact, much of the formalism developed there is
directly applicable.

Using the basis vectors »'*’ in (51)-(55
decomposition of R’ takes the form

), the invariant

§=6x(&)+oy(E)+ow(E), (72)
where

$x(5)=2[(¢-0"M)"+(§-0®)?], (73)

¢U(§)=§[(§-w(3’)w‘3‘+(§-w(4’)w“)] , (74)

dw(E)=HE 0™ . (75)
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If {€EX, then ¢,(5)=0 and ¢,,({)=0. This places where
three linear constraints on the five §;, leaving two in-

A . . e, =(coska, sinka) ,
dependent coordinates, say §, and &,, with the remaining k ’ ’
ones determined by and n ranges over all integers such that
S=TETE) (76)
A
B R0 S B
e e . - 2 XX AN X
= e ( A SO IR
R 60752, 7D B '.m;'c:;::)ér';;"'é‘:{;rjn' ‘lri;}"c‘,:,
. A A N7
47 6T 6 78) X

Now a lattice point 27v very close to X will have com-
ponents that almost satisfy (76)—(78). In particular, both

’ »
. . . . oS e g § e, S
v, and 7v, will be close to integers, the discrepancies be- SR N S . OSSR,
. .- . , X SO XX EXIX ]
ing written (notation of Sec. IID (rv, N ={«v, /7). S Sl B
e Y - NS
- R XD
k=0, 2. Moreover, - e B
R S R
(79} SIS
vi=rlvg vy — (v /7)) — Kvy /7 » o, (79) KRS Sy
pa - Q » T AN
Vvi= =Ty — vyt Lvg/m) 180) RN
X D ar,®
< K IR
vo= v v+ /o) 81
2 2 ""%éa:egag 45.‘5:‘»;@:1&'., .‘. ‘A XD
R : : KA KRN o Srese
Substituting (79)-(81) into (73) and rearranging terms, 0 ""),’4‘.,,4?5“‘.'@,—‘6?.;1’5!\ ;5:.:;,[5»
4 : : a .w" 7o X DA "1‘
we for the projected lattice n SRS T SO %
get for the projecte point AR T A
‘)d, ,:2((,‘ (vy) (82
2y iv)=2m(g(vy), ..., qvy)) 82
with (a)

glm)=m+Lq(m)) .

A SRS R TS S— "
SRR RIS RSP
Ve A ST R Wiy S AV S SN SNy A SAN Y
K RIS I XX DS
. AV RN AV, LV S gy 1 NSIRTN
and IR K N\ IR AN s ran
(AKX DAL XX ESIORL XX ACKIX SIEX TR
SOOI R I X DR USRI DA
= KK IR TR X SR X PR DSN
= — -~ \% AN PSSR RSP RK SUNIs SN S
Lgim)) Lm /N /V'5 e S s A Y S A KX
ISR DA RK ] SR DRZCH
PR I X I X PRI LI HCLEPS
] (DA s THY, S J I DA DA/
The orthogonal displacement of the subspace X from 2mv S DS ORSER ARSI SO
I XX L XX WX ISR XX LXX DD
s NP DK X DX oA
s B TN A Ses v AW S A o
MR K R X RN X KX
AN KX DIERHT KX PRI T X KPS
= - s s S AN s AR s s 2
y="2mby(v)=27((gvy) N, ..., Lglvy) N, (83) R R R R S R IS BRI
PSRN AN, QY & N
. . . y oKX XX IS ;04»5? 1;0,0; AL XXD n.»,;r 2
with components linked by [the analog in U of (76)-(78)] s O SV s S S
REMKIX ISR AN IR AN XX HESZRTRN ZDS
=—7 Nxot+x2) (84) e o e e A e AV R S s A
R R R R R IR R R DRI
R AR TN X I SZR RN I IR DR K S
1 . I XX DI X KX DIEZHE N M KX RS XX DTS
=7 Xo X (85) TN AL ISR S SIS
3 0 A2e - RN A R DR R RN X DR T RN
7os> i AVAT oA TS i g B8 TS oo, S S, SAVA o S,
\VASE 8L Z0s 2008 Zan %S 2elnes Zos Lo aser
~1 OISR N S, SO, SIS SN, 2
V4= ~Xot7 X3 - (86) XD RMCKIX XX DT XX KX DRI
4 o 2 NS A e LSS A 2 S T, ST 2
RN X S TR SR RN XN X
N S A A 2o s e e AN
3 1 ' 4 — AN NS SERIANAS Ak
Note that the restriction that the lattice point 27y be TS 0 S S T s RN AN
c10s i = o v N SRR MR
close to X automatically ensures that ¢,,(v)=0, and so Y e s A N e s S

can be parametrized by the two rectangular coordinates
in U, namely u and v.

Consider now the set 1, of all points of X of the form (b)
(82) such that the distance to the nearest lattice point 27v
(namely, |n(v)]) is less than or equal to €. To see that 1,
is a quasiperiodic array, we can apply the same reasoning

FIG. 5. Quasilattice 11, of projected integer lattice points of
tolerance (a) e=1/5 and (b) e=1/(57). These are seen to lie at

as in Sec. IIL The set the mutual intersection points of five symmetrically placed one-
as in sec. ’ €se dimensional grids. The collection of disks shown in the picture
fx+2mv: VEZS,)(EXJ,I)A <€} represent the intersections of the two-dimensional subspace X

with the five-dimensional geometrical object obtained by plac-

is obviously periodic with period 27 in each coordinate ing a 5D ball of radius € at every integer lattice site. The projec-
direction. Moreover, I1_ is just the intersection of this set tions of the integer lattice sites are thus the centers of the disks.
with X. This is sufficient to establish the quasiperiodicity. The disks have been enlarged by a factor of 200 to aid the eye.
Another way of thinking about the set II, is in terms of The lines, on the other hand, are the intersections of X with hy-

a pentagrid construction in the xy plane. Let us draw the  Pperplanes &y =const, spaced as in the one-dimensional quasi-
five one-dimensional grids crystal of Sec. I, with b/V o =¢€. The scales of the two pic-
tures differ by a factor 7 in order to make obvious the scale in-

e x=2mqln), i=0,....4, (87) variance of 11, and the associated pentagrid.
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< €/5
=5 (88)

(=)

Then II, is a subset of the mutual intersection points of
all five grids [it is a proper subset, since the distance con-
straint defining II, is stronger than the componentwise
constraint (88)].

The quasicrystalline structure of II, is illustrated in
Fig. 5. In that picture, the projected lattice points of
tolerance € are located at the centers of the various disks,
with the five families of associated grid lines shown in the
background. The disks are generated by imagining each
five-dimensional lattice point 27v surrounded by a sphere
of radius €; the disks are the intersections of the spheres
with X. If in a certain neighborhood the orthogonal dis-
placement of X from 27v is ¥, with |y| <e, then the cor-
responding disk is of radius V'e?—|y|2. For display pur-
poses, we enlarge each disk by a factor of 200.

The set I, and the associated pentagrid possess certain
important symmetries: invariance with respect to 27 /5
rotations, reflections with respect to any of the directions
e, and rescaling by a factor 7:

HE/TZTHE ’ (89)

with an analogous property of the associated pentagrid.
The scaling (“deflation™ [7]) property of both sets is im-
mediately evident in a comparison of frames (a) and (b) of
Fig. 5.

The phase portrait in the neighborhood of a sample
projected lattice point [near v=2m(13,42,13, —34, —34)]
is shown in Fig. 6. We note the presence of a stable fixed
point of M slightly displaced from the projected lattice
point in the center. The set of such fixed points (quasi-
centers) is the subject of the next section. We see that in
passing from the projected lattice points to the quasi-
centers, we must give up most of the symmetries just
mentioned, but in spite of this, the quasicrystalline char-
acter of the array remains.

251.29 T T T T T

| S
N\

= .

250.89 ] | ] | |
81.38

>

81.78

FIG. 6. Phase portrait of the web map (@ =0.3) in the neigh-
borhood of the projected lattice point near 27,
v=(13,42,13, —34, —34). The stable fixed point is the associat-
ed quasicenter.

VI. QUASICENTERS OF TOLERANCE ¢

In the last section we constructed a quasilattice of
phase-space points that lie within a distance € of five-
dimensional integer lattice points 27v, vEZ>. As we
shall soon see, the situation shown in Fig. 6 is typical:
near each of these projected lattice points there is a fixed
point of M3, which we have named a quasicenter of toler-
ance €. Moreover, it will be shown that these shifted ori-
gins of the phase portrait form a quasiperiodic array in
their own right. The geometrical relation of lattice point,
projected lattice point, and quasicenter is indicated
schematically in Fig. 7. This diagram shows the vicinity
of a lattice point 27v, which is separated from the irra-
tionally placed phase space X by a displacement y € U.
The coordinates of y are 2m{{q(v,))), and those of the
projected lattice point x +2mv are 2mq(v, ). It is easy to
imagine this scenario translated to the vicinity of the ori-
gin, where the position of the fixed point x * is a solution
of the equation

M3 (O =M, (x*)—x *=0 (90)

For u=0, this equation has the trivial solution
x*(0)=0,

and, moreover, its Jacobian determinant there is nonvan-
ishing:

det[1—DM>3(0)]#0, 0<a<1.

By the implicit function theorem, there is a unique solu-
tion x *(u,v) of (90) in some neighborhood

In(u,v)[=13]ul <8 .

The solution set defines a smooth two-dimensional mani-
fold

Fs(0)={n(w)+Ex*) : |p(u)] <8} .

By translation invariance, for vEZ 5

o7
»

w
~

27tv + x + §(X*)

2nv+ x

FIG. 7. Sketch of the vicinity of an integer lattice point 27v
located close to the irrationally placed subspace X (identified
with phase space). In reality, the embedding space is five di-
mensional, and X is two dimensional, intersecting the two-
dimensional fixed-point manifold ;s in a single point, the quasi-
center. By means of a translation by —2mv, one can shift the
entire configuration to a neighborhood of the origin.
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Fs(2mv)=2mv+ F5(0)

is also a manifold of fixed points of M3, depicted
schematically by the curve in Fig. 7. Its intersection with
X is then the quasicenter of tolerance € associated with v.
Taking the union over all v defines a periodic set of fixed
points of M2 whose restriction to X is the quasiperiodic
array of quasicenters of tolerance €.

A systematic recursion scheme for determining
x *(u,v) is the following:
*0=0 91)
X =g R gy (92)
5x M=GoMY i, (0) (93)
niu)+ I(x )
G.=—(DM?'(0) " (94)

This is closely related to Newton’s root-finding method in
R? (for which G, would be replaced by Gn(u cea )
The use of a constant matrix G, makes (92) partlcularl}
appropriate for the systematic extraction of Taylor

coefficients of x *(u,v), as well as for the rigorous proof

of convergence which we discuss in Sec. VIII below. We
note that the first-order approximation
P =6x'""=G,M'}, (0

1]luw

gives an expression that correctly reproduces the linear
approximation to the fixed-point manifold, with an error
of order ;n(u)|? (by inversion symmetry, only odd powers
of u and v are encountered). Specifically,

Uiy ei= 3 A4, 0= A gut Ag v +0Culh
m -+ nodd
(95)
y¥*Uuer= 3 B,,u"™"=Bu+tByuv+0(u
m +nodd
96!
where

A, =4s(5—8s%)a —(5—8s%)a’—~s(1—4s%)a’
A0 =0,

B,,=—10a -l-2s(5—4s2)az—(%~6s2)a3 ,
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By, = ~4s5(5—4s%)a+(5—4s?)a*—2s(1—2s%)a’,
1

D=20-—8s(5—6s52)a+10(1—2s2)a’+s(1—4s*)a"
s =sina .

A second application of (92) gives the third-order
terms

x* o) =x*"u,0)+ Ay0u’+ A put+0(ul’) |
(97)
v* )=y )+ Bygu’ + By utv + B yuv”
+Byv +0(jul®) . (98)

The explicit analytic expressions for the coefficients are
complicated and not particularly instructive. We list
some representative numerical values for five values of «
in Table I. We note that the coefficients of u,v vanish for
a —0, whereas the cubic terms do not. In this limit, pro-
cess (92) is nothing but an iterative method for solving
the transcendental equations

c)H (77 u u;+q(x,y)) aH (n u,v +g( ,y))

(3 X

with

4
15(8)= E cossy, -

VII. DIFFRACTION PATTERN

The diffraction pattern of the set of quasicenters of
tolerance € is the Fourier transform of the density func-
tion p(x) consisting of a sum of & functions of unit
weight:

0 (x)=T 8 x—x}) . (99)

where the sum is over all integer lattice points vEZ”®
such that [¢,(27v)| <€, ¢, (27v)=0, and x} is the
unique quasicenter of tolerance € associated with 27v.

The density is the restriction to X of the generalized func-
ton
=S fol+2my) (100)

ez’

TABLE 1. Coefficients appearing in Eqgs. (97) and (98), for five values of the parameter a.

\ a O\

0.1
Coeﬂic@f\

A 0 ~0.040797 3
Ay 1/24 0.0412728
A, --1/8 —0.105816
By, 0 ~0.047960 1
By, 0 ~0.025214 1
By 0 0.0052908
B., 1/8 0.113098
B, 0 0.0052908
By, ~1/24  —0.0339907

0.3 0.5 0.7

-0.113159 —0.175368 —0.229422
0.0389279 0.0356577 0.0321869
-0.077 3203 --0.0578029 —0.044073 3

-0.133026 —0.206 158 -0.269 702

-0.069 936 —0.108 384 —0.141791
0.011598 0.014 4507 0.0154257
0.0932836 0.077 6927 0.065304 9
0.011 598 0.0144507 0.0154257
*OOH 7()8 00109553

00229646
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fo(§(x,y,U,v,w))=82(x—x *(u,v))
XO(e*—3(u+v?))

X0(e2—w?) . (101)

Note that the support of f, is not contained in the full
three-dimensional fixed-point manifold, but does have the
correct intersection for w=0. The advantage is a simple
w dependence for f,. As a consequence of the periodicity
of f(£), we can expand it as a Fourier series,

=3 c,e*t (102)
nEe VA
where, assuming €  sufficiently small that
suppfo C[—m, 7P,
c,=m) 73 [d¢e " HEf4(6) (103)

=y fdx dy du dv dw 0(e*—3(u>+v?))6(e? —w?)
X8Hx—x*(u,v))exp[ —i(k (u)x+ - -~

Since k(1) determines p only up to an arbitrary multiple
of ®®=(1,1,1,1,1) [10], each distinct exponential in
(105) corresponds to an equivalence class of xmodo'®,
which we denote fi, with coefficient

cﬁ=p=2_ c/.z+pw‘5)’ 'u,eﬁ .
Since in (104) k, (1), k, (1), and k(1) depend only on the
equivalence class of u, the sum in (106) can be carried out
explicitly:

_—yfdu dv (é*—u—v?)

(106)

Xexp[ —i(k,(u)+k,(u)

+k(p)-x*(u,v))], (107)
where
p=532"65—4
é=1"2¢.

To evaluate c_, we need to insert the fixed-point func-

Tk, (ww)], tions x *(u,v) and y*(u,v) in (107). First let us do this in
(104) the first-order approximation [(95),(96)]. Introducing
with k,=k,+ Ak, k,=k,+Bk,+Byk, ,
k() =p-o, k(p=po?, k,(p)=po we have
4 c. =79 [ dudv0(€e2—u?—vHexp[—ilk,(u)+k, ()]
k,,(/.t)=/.t-a)(4’, kw('u)___’u_m(s)zz Wi Iz f R P ull v \H
i=0 o J1KkE)
y=5522"17"5 =27 Te (108)
On the other hand, with
i ik (p)- PN 5
PdX)=FIEX)N=F c,e™E®=F ¢ "1™ (105 k=VEkI+k?.
n u
h Let us go to one additional order in the expansion of
where x *(u,v). Substituting into (107) and truncating at the
p)=(k(p),k,(u)) . cubic terms give
J
I e P B
_—-’y duee —u ) 1+kx 2 A —= —=
f m+n=3 " aku ku
a m n ~
+k, 3 B, li| |i e ik (109)
m+n=3 ak,
J,(ke)
=29e? 2 +g(ke)e*(3k,Cy+3k,Co; +k,Cy, +k,Cyy)
+h(ke)esk3Cyy+k3Cy +k2k,Cp+ Kk, k2Cp) | (110)
where
glar==u@+ |- S+ 5 @), k= - L2 0-B0),
x z z z z
Cpn(@)=—ilk, (E) A, +k,(E)B,,,) .

In the Hamiltonian limit ¢ —0, (110) reduces to
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_=29¢? — + &% —k 3I_ 2
e e 24 h(k@)e®(—k k) +k k) —3k klk, +3k klk,)

As a simple application of the density function p(x)
and its Fourier transform, we can easily determine the
average spacing d, of the quasicenters in the plane. This
is just 1/1/ N, where N, is the average number of quasi-
centers per unit area of phase space, given by

pf(x)dx Vs
N = lim I, e =6 )
— fdx 327
A
Thus
d =25/27T3/25A1/46“'l . (113)

Note that these are exact statistical results for averages
over all phase space, not simply approximate results for
small €. For €=0.2, formula (112) predicts that there
should be about 1500*XN,,=202.828 quasicenters
displayed in Fig. 5. The actual count is 207.

Similar reasoning allows us to calculate Ny(8E), the
number of quasicenters per unit area that have energies
[i.e., values of H(x,y) in (3)] within 8E of the maximum
value, 5. The density of such quasicenters is the restric-
tion to subspace X of a generalized function fy defined
by

0= 3 fuol&+2mv), (114)
vezs
fulé(x,y,u,v,w)) (115)
=8%x—x*(u,v))
4
X6 |8E—5+ 3 cosgi(x,y,u,v,w) e 2 —w?) .
i=0
(116)
Then
Ny(8E)=7 [ du dv 6(8E—H(u,v)) (117)
where
4
H(u,0)=5 2 S[E,(x* (u,0),p*(u,0),u,0,0)] .
- (118)

The integral in (117) just calculates the area enclosed by

the contour H(u,v)=8E. For small 8E, the latter
asymptotically becomes an ellipse, so that

Ny(8E) T/’Tls—ﬂto((SE) ), (119)

detF

where the matrix F, defined by

H(u,v)=u-F-u+0(|ul*) (120)
Explicitly,

4
=k E fi (121)

(11D

Xvttu ’
i

where
Su -cosﬂ+A SMJrB in 27 ,
5 5 5
S =sin 4k +Bl,smM ,

with 4,9, B,o, By, given in (96). For the asymptotically
small parameter a the result is particularly simple:

lim/)N,,(BE)2(277)*477\/38E+0((8E ?) . (122)
a -

This gives an analytic expression for the high end of the
elliptical fixed-point distribution found empirically in [3].

VIII. COMPUTER-ASSISTED CONVERGENCE PROOF

For fixed a and ¢, the existence of a quasiperiodic lat-
tice of quasicenters of tolerance € can be proven rigorous-
ly by establishing the convergence of the iterative scheme
[see (91)-(94)]

x'V=0, (123)
X '””:x'"\’ﬂ—ﬁx‘"’, (124)
SX(n)EGO[ﬂ(;)(X(n)_XM))] ,

for all {€ U with |£] <e. By virtue of the quasiperiodici-
ty, establishing the convergence criterion in the neighbor-
hood of the origin suffices to establish its validity every-
where in the plane.

Our strategy is to obtain bounds on |8x '*'| that tend to
zero for n — o with sufficient rapidity that the existence
of limx "' can be inferred. For this purpose we need a re-
cursion relation for 8x '™, which can be derived from
(124) and (125) as follows. First we apply ZVI(:S) onx'"*!
and expand in a Taylor series: \

MO (x =M (x

(125)

lr1i+6xul')

:A’WE—S)(X["’)+DM(-5](X('1))‘6){“"
ISX nt, 2Ml5J( g Ax .8
(126)

where Ax "' lies in the closed rectangle spanned by 0 and
&x " (1e, with 0 and 8x'" at opposite corners) and
DZM '(x) is the matrix of second derivatives of Mm
evaluated at x. A dot represents the contraction of a
derivative index with that of 8x . Rearranging terms in
(126) and multiplying from the left by G, leads to

axin +1) — 0[(DM(§5)(X(m)_DMS(O))‘SX(")
+16x"-D2M (x M+ Ax")-8x "]
(127

The convergence problem can be stated rather simply
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with the aid of interval analysis [21]. The method allows
one to obtain rigorous bounds on any function of real
variables x,y constructed using elementary rules of addi-
tion, subtraction, multiplication, and division. The idea
is to extend these arithmetic operations to closed inter-
vals in such a way that worst-case bounds are always
respected. For our purpose we must add to the list of
rules (see Appendix) ones giving bounds to the sine and
cosine of an interval.

The concept of bounding interval generalizes easily to
higher dimensions. An ordered pair (two-vector)
([x1,x5,),[¥1,¥,]) thus represents a bounding rectangle
with corners at (x;,y,), (x;,5,), (x5,¥), and (x,,y,) in
the xy plane. Similarly, an ordered n-tuplet of closed in-
tervals represents a bounding n-dimensional paral-
lelepiped. In other words, an ordered n-tuplet of inter-
vals is just another way of writing a direct product of the
intervals. To facilitate the operations of interval analysis,
we prefer the ordered-multiplet notation in this section.

Let us start with x " €&, 8x V€T, where & and T
are bounding rectangles. We can then calculate a bound-

ing rectangle " 1 for x " 'V defined by (124) as
Shtl=9+T, (128)

in the sense of interval addition (see Appendix). More-

over, we obtain a bounding rectangle T'" 'V for &x (" *1)
based on (127),
T V=G[(DM*(S)—DM*0))-T
+1T-D*M3($S" D). T . (129)

Again, the right-hand side has meaning in the sense of in-
terval arithmetic, once we have given a specific represen-
tation of DM > and D>M? in terms of elementary algebra-
ic and trigonometric operations. Any of the many
equivalent representations will do, but of course some
will give better bounds than others. In order to prove the
convergence of our fixed point search, it is sufficient to
show that iteration of the mapping of bounding rectan-
gles defined by (128) and (129) converges to a limit, with
lim 7,=0=[0,0]X[0,0] .
n— o
The idea is illustrated in Fig. 8.

To apply the technique just described for arbitrary
e U with lg | <e, it is convenient to go over to a five-
dimensional (5D) formalism. We therefore set up a recur-
sive scheme for bounding 5D parallelepipeds Z" [for
E+Ex™)] and bounding rectangles T (for 8x ™).
Noting the identities

DM3(x)=DM}(0)+1I, D*M3x)=D*M>(0), (130)
where

z2=(zg,...,24), zx=2mw{{e;-x/2m)),

and I is the two-dimensional identity matrix, we get, in
place of (128) and (129),

Zpth=zmW e, .y k=0,...,4, (131)

T"+*V=G[(DM},»(0)—DM(0))- V"

+1T"-DM 3, 1(0)-T™] . (132)

Our strategy is to iterate (131) and (132) N times to
reduce the size of the bounding rectangle 7 to 7y and to
arrive at an intelligent guess for a single Z'®’ to serve as
a fixed 5D parallelepiped for all remaining iterations.
For n > N, we replace (132) by

[T("‘H):L‘T(") , (133)

0.3} =

0.2

0.1 [- ]

-0.2F

X
@
0.06
0.04}
0.02}
dy o} @
-0.02 1
-0.04f
]
-0.06 L L 4 L
004 -002 0 002 004 0.06
ax

(b)

FIG. 8. Sequence of bounding rectangles (a) &, for position x,
and (b) 7, for displacement 8x. The case pictured here is taken
from our actual calculations for ¢ =0.3, €=0.075. We see the
apparent convergence of & to a limiting rectangle, and the con-
vergence to the origin of 7. Interval analysis confirms that the
iterative scheme is indeed convergent in this case (see Table II).
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TABLE II. Rigorous lower bounds on €, for selected parameter values. For all quasicenters of
tolerance less than €, the iterative scheme is guaranteed to converge.

a 0.1 0.2 0.3

€ori 0.17 0.11

0.052

0.4 0.5 0.6 0.7

0.035 0.017

0.075

0.024

where £ is the interval matrix

L=G[(DM,..,(0)—DM(0))

+LTN-DM>,..,(0)] .

Yo (134)

We are through if we can show that the eigenvalues of .L

S={(L1L,[—L,1]D,(—=L1L[ LD, —1,—1,],[ —

are less than unity in magnitude and that the Z'"’, n > N,

all remain within W *’. A bound A for the eigenvalues

may be calculated as

A=1lim [|LV]] . (135)
=

where S is the set of
([_1’1]’[7A171])°

edges of the square

LD, (= LLL[=1, 1D},

and, for an arbitrary bounding rectangle T=([a,b],[c,d ]), we define

||‘7'H=sugjx| =max{Va’+c,Val+d® Vb +c Vbi+d’| .
xXE

With the aid of MATHEMATICA (version 2.1 for the Ma-
cintosh) we have programmed the rules of interval arith-
metic listed in the Appendix and tested the convergence
of the iterative scheme (131) and (132) for selected values
of the parameter a and the tolerance €. In each case we
started off the process with a bounding 5D hypercube
Z'9 of side [ —e€,€] and calculated

‘T°=GM5Z‘0.(0) .

After iterating (131) and (132) five times, if the process
appeared to be converging, we estimated a common
bounding 5D region Z'®’ for the remaining iterations,
calculated a bound A on the contraction rate as in (135),
and checked that all remaining Z'"’ were indeed bounded
by the conjectured Z'®’. In Table II we list, for selected
values of a, the largest values of € for which we were able
to establish convergence. In each case, we estimate that
the actual critical € is no more than 10% larger than the
rigorous lower bound listed in the table.

As is almost always the case, rigorous bounds estab-
lished by interval arithmetic are very conservative. To
explore the actual situation for the process (124) and
(125), we made a numerical convergence check for all
projected lattice points of tolerance 0.3 within the paral-
lelogram

0<e, x<600m, k=0,2,

for parameter values @ =0.1,0.2,...,0.7. As one can
estimate from formula (112), there are over 1200 such
points, and if one includes all images under the map M
and the inversion operator, the results actually apply to
ten times as many points. The iterative scheme was
found to converge, with an accuracy of 1072, in every
case.

IX. REMARKS

A fascinating aspect of the stochastic web is the
dynamical generation of quasicrystalline structure. Here
one usually refers [12] to the geometry of the web itself, a
network of narrow channels traced out by a single un-
bounded chaotic orbit. In the present work we have
treated a far simpler manifestation of the long-range
quasicrystalline order, namely, the quasiperiodic lattice
of fixed points called quasicenters. These are replicas of
the origin of coordinates with respect to the action of the
map. By choosing a suitable translation vector, one can
always find a quasicenter that mimics the true origin with
arbitrarily high accuracy over the entire phase plane.
The situation is similar to, but not equivalent to, the local
isomorphism property [7] of the Penrose tiling (the latter
is an exact congruence of finite parts of the tiling). Al-
though the lattice of quasicenters is only part of the
whole story, it provides an important milestone on the
road to a comprehensive understanding of the web map’s
quasicrystalline structure.
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APPENDIX

The basic ideas of interval arithmetic are set forth in
Ref. [21]. An interval is simply a closed interval on the
real line, labeled by its end points, e.g., [a,b]. The fol-
lowing rules give worst-case bounds for the elementary
operations of arithmetic as applied to elements of the
respective intervals [21]:
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la,b]+([c,d]=[c,d]+[a,b]=[a+c,b+d],
[a,b]1X[c,d]=[c,d]X[a,b]
=[min{ac,ad,bc,bd },max{ac,ad,bc,bd}] ,

a+[b,c]=[b,c]t+a=[a,a]+[b,c],
a-[b,c]=[b,c]-a=[a,a]—[b,c] »
[a,b]—[c,d]=[a,b]+(—1)[c,d],
[a,b)/[c,d]=[a,b][c,d]™".

These are supplemented by rules for integer powers (in
the following, n is a positive integer):

b1 [O,max{a",b"}], n even, 0E€][a,b]
la,b]"= [min{a",b"},max{a",b"}] otherwise ,

[a,b1°=[1,1],

2 [a5/120, a <0

57477 o, a>0,
b3 0, b <0
=0T 1p5 120, b>0,

—1 [_°°:°°L OE[a,b]
la,b]""= [min{1/a,1/b},max{1/a,1/b}] otherwise,
la,b] "=([a,b])7".

Finally, we need useful bounds for the sine and cosine
functions when their arguments are reasonably close to
an integer multiple of 27. For this purpose we replace
the irrational = by the interval [7V,77]
=[31415926 535897 932X 107 6,31 415926 535897933
X 10716

sin([0,0])=[0,0], cos([0,0])=[1,1].
For — 7 <a<nw™,
[sa?sb]’ a,bE[—l,l]
[—1,1] otherwise ,
[caicb]’ a,bE[‘-l,l]

[—1,1] otherwise ,

sin([a,b])=[

cos([a,b])=[

where

¢,=min{1—a?/2+a*/24—a®/720,1—b%/2+b*/24—b%/720} ,

a<0 and 20

1,
€= |max{1—02/2+a4/24,1—b2/2+b4/24} otherwise .

Fora < —#", we use

sin((a,b])=sin([a+7",b+7"])

and for a > 7+, we use
sin([a,b)=sin([a—=t,b—7"]),

and analogous formulas for the cosine.
We restrict ourselves to exact operations on rational

numbers. For the sake of efficiency, we follow each
operation with worst-case rounding of the interval end
points to rational numbers of the form g X 10", where q is
an integer with at most five digits.

We implement our rules of interval arithmetic using
MATHEMATICA (trademark, Wolfram Research, Inc.),
version 2.1, on a Macintosh Ilci personal computer. A
similar approach, with rounding of floating-point num-
bers, is used in the MATHEMATICA package ‘“Interval
Analysis.”
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